
PRINCIPLES OF OPERATING SYSTEMS

LECTURE 33
APPLICATION I/O INTERFACE

Application I/O Interface
 The OS software interface to the I/O devices (an API

to the programmer)
 Attempts to abstract the characteristics of the many

I/o devices into a few general classes.
 I/O “system calls” encapsulate device behaviors in

generic classes
 Device-driver layer hides differences among I/O

controllers from kernel
 Devices vary in many dimensions

 Character-stream or block
 units for data transfer bytes vs blocks

 Sequential or random-access - access methods
 Synchronous (predictable response times) vs

asynchronous (unpredictable response times)
 Sharable or dedicated - implications on deadlock
 Speed of operation - device/software issue
 read-write, read only, or write only - permissions

A Kernel I/O Structure

System calls ==>
… “user” API

==>

Example: ioctl(…)
generic call
(roll your own)
in UNIX (p. 468),
and other more
specific
commands or calls
open, read, ...

Fig. 13.6

Characteristics of I/O Devices
Device driver must deal with these at a low level

Use of I/O buffering

Block and Character Devices
 Block devices include disk drives

 example sectors or sector clusters on a disk
 Commands/calls include read, write, seek
 Access is typically through a file-system interface
 Raw I/O or file-system access - “binary xfr” of file data - interpretation

is in application (personality of file lost)
 Memory-mapped (to VM) file access possible - use memory instructions

rather than I/O instructions - very efficient (ex: swap space for disk).
 Device driver xfr’s blocks at a time - as in paging
 DMA transfer is block oriented

 Character devices include keyboards, mice, serial ports
 Device driver xfr’s byte at a time
 Commands include get, put - character at a time
 Libraries layered on top allow line editing - ex: keyboard input
 could be beefed up to use a line at a time (buffering)

 Block & character devices also determine the two general device
driver catagories

Network Devices

 Varying enough from block and character to have own
interface - OS makes network device interface distinct
from disk interface - due to significant differences
between the two

 Unix and Windows NT/9i/2000 include socket interface
 Separates network protocol from network operation
 Encapsulates details of various network devices for

application … analogous to a file and the disk???
 Includes select functionality - used to manage and access

sockets - returns info on packets waiting or ability to accept
packets - avoids polling

 Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes) … you saw some of these!

Clocks and Timers

 Provide current time, elapsed time, timer

 If programmable, interval time used for timings, periodic
interrupts

 ioctl (on UNIX) covers odd aspects of I/O such as
clocks and timers - a back door for device driver
writers (roll your own). Can implement “secret” calls
which may not be documented in a users or
programming manual

Blocking and Nonblocking I/O
 Blocking - process (making the request blocks - lets other process

execute) suspended until I/O completed
 Easy to use and understand
 Insufficient for some needs
 multi-threading - depends on role of OS in thread management

 Nonblocking - I/O call returns as much as available
 User interface, data copy (buffered I/O)
 Implemented via multi-threading
 Returns quickly with count of bytes read or written - ex: read a “small”

portion of a file very quickly, use it, and go back for more, ex:
displaying video “continuously from a disk”

 Asynchronous - process (making the asynch request) runs while I/O
executes

 Difficult to use - can it continue without the results of the I/O?
 I/O subsystem signals process when I/O completed - via interrupt (soft),

or setting of shared variable which is periodically tasted.

